1,1,1,2,2-Pentaiododiphosphanium cations, $P_2I_5^+EI_4^-$ (E = Al, Ga or In): synthesis and characterisation by ³¹P MAS NMR, IR and Raman spectroscopy

Christoph Aubauer,^a Günter Engelhardt,^b Thomas M. Klapötke^{*a} and Axel Schulz^a

 ^a Institut für Anorganische Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13(Haus D), D-81377 Munich, Germany. E-mail: tmk@cup.uni-muenchen.de
 ^b Institut für Technische Chemie I, Universität Stuttgart, D-70550 Stuttgart, Germany

Received 10th February 1999, Accepted 7th April 1999

The compound $P_2I_5^+AII_4^-$ and the novel compounds $P_2I_5^+GaI_4^-$ and $P_2I_5^+InI_4^-$ have been prepared in two different ways either from PI₃ and EI₃ or from P_2I_4 and I_2/EI_3 (E = Al, Ga or In). The products have been characterised by solid-state ³¹P MAS NMR, Raman and IR spectroscopy. The solid-state ³¹P MAS NMR spectra are compared with NMR studies of related PI_4^+ salts and alkylphosphorus tetraiodides. Vibrational assignments for the normal modes for the solid-state species $P_2I_5^+EI_4^-$ (E = Al, Ga or In) have been made on the basis of their Raman and IR spectra. These results are in excellent agreement with density functional calculations for the $P_2I_5^+$ cation and are consistent with the ionic formulation $P_2I_5^+EI_4^-$ (E = Al, Ga or In).

Introduction

As early as in 1964 Baudler and Wetter¹ obtained a deeply coloured co-ordination compound (2 PI₃·AlI₃) from the reaction of PI₃ and AlI₃ in CS₂. They assumed a monomeric structure having a symmetric trigonal bipyramidal arrangement (symmetry D_{3h}) with sp³d bond hybridisation and a coordination number of 5 at the aluminium atom, analogous to $(Me_3N)_2AlH_3.^2$ The 2:1 adduct of PI_3 and AlI_3 was structurally characterised by X-ray crystallography and identified as $P_{2}I_{4}^{+}AlI_{4}^{-}$ by Pohl³ in 1983. Pohl suggested as reaction mechanism the intermediate formation of " PI_2^+ " via I^- abstraction by the Lewis acid AlI₃ yielding AlI₄⁻. In the next step the "PI₂⁺ reacts with a second molecule of PI_3 forming the $P_2I_5^+$ cation via P–P linkage.³ Similar to $PI_4^+AII_4^{-,4}$ the cation and anion are connected by bridging I \cdots I interactions. The P–P distance in the $P_2I_5^+$ cation (2.218 Å) is very similar to that in P_2I_4 (2.21 Å).⁵ Like the related alkylphosphorus tetraiodides RPI_4 $(R = Me_{,}^{6} i - Pr_{,}^{7} t - Bu^{7} \text{ or } Me_{3}SiCH_{2}^{7})$ and the tetraiodophos-phonium cations in $PI_{4}^{+}AII_{4}^{-4}$ and $PI_{4}^{+}GaI_{4}^{-,8}$ the $P_{2}I_{5}^{+}$ cation exists only in the solid state.

Recently, we published a combined theoretical and experimental study on the PI_4^+ cation.⁸ It has an extremely large negative ³¹P chemical shift which quantum chemical calculations and solid-state NMR spectroscopy showed is due to spin–orbit coupling. This investigation naturally led to further work on binary phosphorus–iodine cations. A recent MAS ³¹P NMR study on related cationic di- and tri-tertiary phosphines in the solid state and in solution can be found in the literature.^{9a,b} In this paper we report on the preparation and properties of the structurally and chemically interesting $P_2I_5^+$ cation.

Results and discussion

All the compounds reported here were prepared from the reaction of 2 equivalents PI_3 with 1 equivalent of EI_3 (E = Al 1a, Ga 2a or In 3a), eqn. (1), or from the reaction of P_2I_4 with I_2

$$2 \operatorname{PI}_3 + \operatorname{EI}_3 \xrightarrow{\operatorname{CS}_2} \operatorname{P}_2 \operatorname{I}_5^+ \operatorname{EI}_4^- \tag{1}$$

and $EI_3 E = Al \mathbf{1b}$, Ga $\mathbf{2b}$ or In $\mathbf{3b}$) in a 1:1:1 molar ratio, eqn. (2), in CS_2 under nitrogen.

Fig. 1 Fully optimised geometry of $P_2I_5^+$ [bond lengths in Å, partial charges (italics) in e].

$$P_2I_4 + I_2 + EI_3 \xrightarrow{CS_2} P_2I_5^+ EI_4^-$$
(2)

The $P_2I_5^+$ cation exists only in the solid state. Dissolving $P_2I_5^+EI_4^-$ (E = Al 1, Ga 2 or In 3) in CS₂ gives a solution that contains essentially only PI₃ ($\partial^{31}P + 178$ in CS₂^{9c}) and the corresponding triodides EI₃. Evaporation of the solvent allows recovery of the $P_2I_5^+$ compound.

Attempts to prepare $P_2I_5^+$ compounds, containing an iodine free anion, such as AsF_6^- or SbF_6^- , by treating P_2I_4 with $I_3^+AsF_6^-$ or $I_3^+SbF_6^-$ in different solvents, were unsuccessful. The reactions were carried out analogously to the preparation of $PI_4^+AsF_6^{-10}$ and $PI_4^+SbF_6^{-.8}$ However, these reactions led only to decomposition into the thermodynamically more stable products PF_3 , I_2 , AsI_3 and SbI_3 , respectively, which were identified by Raman spectroscopy. We conclude that the $P_2I_5^+$ cation can only be stabilised with anions like EI_4^- (E = Al, Ga or In).

Fig. 1 shows the B3LYP-optimised minimum structure of the free $P_2I_5^+$ cation. In addition, the geometry and frequencies of the PI_4^+ cation were calculated for comparison [B3LYP: d(P-I) = 2.431 Å, v_1 (A₁, 0.0) 165, v_2 (E, 0.0) 62, v_3 (T₂, 67) 385, v_4 (T₂, 0.0) 96 cm⁻¹]. Both cations were shown to possess stable minima at the B3LYP level (no imaginary frequencies). As expected for steric reasons, $P_2I_5^+$ displays a staggered configuration with an I1–P1–P2–I5 dihedral angle of 54.3°, and three essentially equal P–I distances for the PI₃ part and two effectively equal, but longer, P–I separations for the PI₂ unit. The

J. Chem. Soc., Dalton Trans., 1999, 1729–1733 1729

Table 1 Raman and IR wavenumbers (cm⁻¹) for $P_2I_5^+EI_4^-$ (E = Al 1a, Ga 2a or In 3a)

$P_2I_5^+AlI_4^-$ 1a		$P_2I_5^+GaI_4^-$ 2a		$P_2I_5^+InI_4^-$ 3a		Calculation ^a	Assignment
Raman	IR	Raman	IR	Raman	IR		
390 (1)	393m	389(1)	392m	389(1)	389m	394 (A', 50.0)	(I)1
384 (2)	382m	382 (2)	380m	381 (1)	380s	382 (A", 37.9)	ω_1
348(0.5)	346 (sh)	347(0.5)	343m	346 (0,5)	347m	354(A', 94)	(0)2 (0)2
510(015)	210(01)		0.000	510(015)	01711	350(A'', 61.6)	
324(1)	317 (br)	321 (2)	314 (br)	323 (2)	314 (br)	325(A', 24.9)	
521(1)	517 (01)	521 (2)	231s	525 (2)	511(01)	525 (11, 21.5)	$v_{\rm e}$ (EL ⁻)
			2218 224s				$v_{3}(EL_{4})$
210 (10)	209m	209 (10)	209vs	210 (10)	211vs	209 (A' 25 1)	
147(2)	20911	143(3)	20743	138(4)	21175	209 (11, 25.1)	$\nu_{\rm e}$ (FL ⁻)
129 (6)		129 (8)		130(4) 127(9)		$128(\Delta', 0, 0)$	
97(4)		97(5)		98(5)		$97(\Delta'', 0.6)$	007 00
89 (2)		88 (2)		90 (3) 85 (2)		97(A', 0.0)	008 ()
09(2)		00(2)		85(2)		94(A', 0.0) 80(A' 0.1)	(D ₉
						60(A', 0.1)	<i>W</i> ₁₀
						58(A', 0.0)	ω_{11}
						38(A, 0.2)	ω_{12}
						42(A, 0.1)	ω_{13}
						39 (A', 0.1)	ω_{14}
						16(A'', 0.0)	ω_{15}

^a See Fig. 4. ^b In parentheses: symmetry, IR intensity [km mol⁻¹].

Fig. 2 Transition state for the internal rotation [bond lengths in Å].

Fig. 3 Raman spectra of $P_2I_5^+EI_4^-$ (E = Al 1a, Ga 2a or In 3a).

experimentally not observed eclipsed configuration (Fig. 2) represents a transition state (number of imaginary frequencies=1, $-i14 \text{ cm}^{-1}$) describing the internal rotation about the P–P axis. The rotation barrier was calculated to be of the order E^a (B3LYP, 298 K) = 2.4 kcal mol⁻¹. The calculated NBO (natural bond orbital) partial charges (Fig. 1) reveal fairly covalent P–I bonds with the positive charge almost evenly distributed amongst all atoms.

Vibrational spectroscopy

Table 1 summarises the computed and experimentally observed vibrational frequencies of the $P_2I_5^+$ compounds synthesised (1a, 2a, 3a) in this study. Fig. 3 shows the Raman spectra of these compounds. Raman and IR spectra of all three sets of compounds (1a, 1b, 2a, 2b, 3a, 3b) are very similar regardless of the method of synthesis. The measured vibrational spectra agree excellently with our theoretical calculation (B3LYP) for

Fig. 4 Pictorial description of the calculated normal modes of $P_2I_5^+$.

the isolated $P_2 I_5^+$ cation. The most intense peak, observed at *ca*. 210 cm⁻¹, can be assigned to a mixture of P1–P2 stretching (ω_6 , Fig. 4) and P1–I1 stretching. The P1–I1 stretching mode (ω_1) at ca. 390 cm⁻¹ and the asymmetric P1–I2,3 stretching mode (ω_2) at ca. 382 cm⁻¹ can be observed in all IR and Raman spectra. Similar vibrational frequencies are reported for the asymmetric P–I stretching mode, v_3 (T₂), in PI₄⁺ÅII₄⁻¹¹ and PI₄⁺GaI₄⁻⁸ at *ca.* 380 cm⁻¹. The signals at *ca.* 346 cm⁻¹ can be described as a mixture of the P1–P2 stretching vibration (ω_3) and the asymmetric P2–I4,5 stretching vibration (ω_4 ; the resolution was not sufficient enough). The predicted value for the symmetric P-I stretching vibration of the P2–I4,5 unit (ω_5), 325 cm⁻¹ (Fig. 4), is most closely associated with the experimental values at ca. 323 (Raman) and ca. 314 cm⁻¹ (IR), respectively. Similar P-I stretching frequencies are reported for the vibrational spectra of $P_2I_4^{12}$ (IR: 330 cm⁻¹), PI_3^{12} (IR: 310 cm⁻¹. Raman: 325 cm⁻¹) and the adduct $PI_3 \cdot BI_3^{13}$ (IR: 304 and 329 cm⁻¹). ω_7 , ω_8 and ω_9 represent P-I deformation modes (Fig. 4) with ω_7 (ca. 128 cm⁻¹) being one of the most intensive peak in all Raman spectra. The presence of the anions EI_4^- (E = Al 1, Ga 2 or In 3) is confirmed by the symmetric stretching mode, v_1 (A₁), at 147 (1),

Table 2 The ³¹P NMR isotropic chemical shift (δ), chemical shift anisotropy ($\Delta \delta_{CSA}$), asymmetry parameter (η_{CSA}) and relative peak intensity (*I*) of the compounds P₂I₅⁺EI₄⁻ and PI₃

$P_2I_5^+EI_4^-$	δ (±0.5 ppm)	$\Delta \delta_{\rm CSA}{}^a$ (±5 ppm)	$\begin{array}{c}\eta_{\rm CSA}{}^b\\(\pm 0.2)\end{array}$	I (%) (±3%)
$1, \mathbf{E} = \mathbf{Al}$				
P1 (I ₃ P) P2 (I ₂ P)	-142 114	-216 -124	0 0.4	48 52
2 , E = Ga				
P1 (I ₃ P) P2 (I ₂ P)	-142 112	-217 -117	0 0.4	49 51
3 , E = In				
P1 (I ₃ P) P2 (I ₂ P)	-139 112	-225 -116	0 0.4	48 52
PI ₃	237	-111	0.3	_
$^{a}\Delta\delta_{\rm CSA} = \delta_{33}$	$_{\rm s} - \delta_{\rm iso}$. ^b $\eta_{\rm CSA} = \delta_{22} $	$-\delta_{11} / \delta_{33}-\delta_{iso} .$		

Fig. 5 ³¹P MAS NMR spectra ($v_0 = 162.96$ MHz, $v_{rot} = 12.5$ kHz) of $P_2I_5^+EI_4^-$ with $E = Al \ 1$, Ga 2 or In 3. The central lines are indicated by arrows; all the other broad peaks are spinning side bands. The sharp lines originate from impurities.

143 (2) and 138 cm⁻¹ (3). They are consistent with literature values $[v_1 (AII_4^-) 146;^{14} v_1 (GaI_4^-) 145;^{15} v_1 (InI_4^-) 138 cm^{-115}]$. The IR spectra of **2** show two strong peaks at 231 and 224 cm⁻¹ that can be assigned to the asymmetric stretching mode, v_3 (T₂), of GaI₄⁻ $[v_3 (GaI_4^-) 222 cm^{-115}]$.

Solid-state NMR spectroscopy

Fig. 5 shows the ³¹P MAS NMR spectra of the three compounds $P_2I_5^+EI_4^-$ with E = Al 1, Ga 2, or E = In 3. Table 2 summarises the isotropic chemical shifts (δ), chemical shift anisotropies ($\Delta \delta_{CSA}$), asymmetry parameters (η_{CSA}), and relative signal intensities obtained from spectra simulations. As an example, the details of the simulation for $P_2I_5^+AII_4^-$ 1 are presented in Fig. 6. Besides the resonance of a PI₃ impurity (component 3, see below, $\delta^{31}P + 160$ to +185 in solution, 9c + 237in the solid state¹⁶), two partially overlapping side band patterns can be identified (components 1 and 2) which correspond to the two P atoms in the $P_2I_5^+$ cation. The different intensity distributions of the spinning side bands indicate different chemical shift anisotropies of the two resonances, but the total intensities are in the expected ratio of 1:1 (Table 2). The spectrum of the PI₃ impurity could be unequivocally identified by the ³¹P MAS NMR spectrum measured at a pure solid PI₃ sample (see Table 2). The weak narrow lines in the ranges of δ 0 to 40 and -340 to -360 are due to very small amounts of other impurities. It should be noted that no indications of scalar ${}^{1}J(PP)$

Fig. 6 Experimental and simulated ³¹P MAS NMR spectra of $P_2I_5^+AlI_4^-$. The central lines of the spinning side band patterns are indicated by arrows in the experimental spectrum. The simulated spectrum is the sum of the three component spectra.

couplings of the two inequivalent P atoms of the $P_2I_5^+$ cation could be observed. Obviously, these splittings cannot be resolved due to the large linewidths (half-width about 3500–4000 Hz for P1 and 2000–2500 Hz for P2).

The spectra of the corresponding $P_2I_5^+GaI_4^-$ 2 and $P_2I_5^+InI_4^-$ 3 compounds are very similar to that of $P_2I_5^+AII_4^-$ 1 (see Fig. 5) and were simulated in the same way. No impurities were found in the ³¹P NMR spectrum of 2. The two central peaks of the $P_2I_5^+$ cation in each of the three compounds were located by variation of the spinning frequency and are consistently observed at δ ca. -140 (P1) and +112 (P2), respectively (Table 2). The resonance at δ +112 (P2) with a non-axial anisotropy tensor ($\eta_{CSA} = 0.4$) can be assigned to a three-coordinated phosphorus atom, i.e. to the I₂P fragment of the $P_2I_5^+$ cation. The shift is very close to that of P_2I_4 (δ +106 in solution¹⁷ and +127 in the solid state¹⁸). The ³¹P chemical shift δ ca. -140 (P1) is attributed to the four-co-ordinated phosphorus atom in the I_3P fragment of the $P_2I_5^+$ cation. In accord with the C_{3v} symmetry of this fragment,³ this resonance shows an axially symmetric anisotropy tensor ($\eta_{CSA} = 0$). The strong low-frequency (high-field) ³¹P shift of δ ca. -267 from the P₂I₄ resonance can be interpreted as a result of spin-orbit interactions due to the presence of three iodine substituents at the four-co-ordinated phosphorus atom in the I₃P fragment. Using density functional calculations, Kaupp et al.8 have recently shown that the extremely large low-frequency shift observed for the related compounds $PI_4^+AII_4^-$ (δ -304), $PI_4^+GaI_4^-$ (δ -295), $PI_4^+AsF_6^- (\delta - 519)$, and $PI_4^+SbF_6^- (\delta - 517)^8$ is entirely due to spin-orbit contributions from the four heavy iodine substituents, transmitted to the phosphorus nucleus by a very effective Fermi-contact mechanism. Equally, for t-BuPI₄ (δ -49.2) the 31 P NMR resonance in the solid state is shifted by -215 ppm to high field from the adduct t-BuPI₂ (δ +165).⁷

Owing to the close similarity of the isotropic chemical

shifts and anisotropies of the $P_2I_5^+$ cation of all three $P_2I_5^+EI_4^-$ compounds, it can be concluded that the structures of $P_2I_5^+GaI_4^-$ 2 and $P_2I_5^+InI_4^-$ 3 are very similar to the known structure of $P_2I_5^+AII_4^-$ with weak $I \cdots I$ interactions between cation and anion.³ However, no crystals suitable for X-ray diffraction analyses could be grown up to now.

Conclusion

The results indicate that compounds such as $P_2I_5^+AII_4^-$, $P_2I_5^+GaI_4^-$, $P_2I_5^+InI_4^-$, including the 1,1,1,2,2-pentaiododiphosphanium cation, can be prepared in two different ways. The solid-state ³¹P MAS NMR results show two different peaks, which can be assigned to a PI₂ and a PI₃⁺ fragment, respectively. Our calculations agree excellently with the experimental wavenumbers of Raman and IR spectra. Solid-state ³¹P MAS NMR and vibrational results suggest that these compounds exist as ionic species in which the P₂I₅⁺ cations possess only weak I · · · I interactions to the anions. It can be considered that the novel compounds P₂I₅⁺GaI₄⁻ and P₂I₅⁺InI₄⁻ have similar structures to that found in P₂I₅⁺AII₄⁻.³

Experimental

General

All experiments were carried out in a dry-box under dry nitrogen. The compounds PI₃, P₂I₄, AlI₃, GaI₃, InI₃ (Aldrich) and I₂ (Merck) were used as received; CS2 was refluxed with P4O10 and distilled before use. The ³¹P NMR spectra were measured at 161.96 MHz with a Bruker MSL-400 NMR spectrometer under magic angle spinning (MAS) conditions. A standard doublebearing MAS probe for 4 mm rotors was used with spinning frequencies up to 12.5 kHz. Single pulse acquisition with 1 µs pulse width (corresponding to a 25° flip angle) and 5 s pulse repetition was applied. The samples were filled in 4 mm zirconia rotors under a nitrogen atmosphere in a glove-box. The spectra were referenced to 85% aqueous phosphoric acid. Spectral simulations were carried out with the PC program WINFIT of the Bruker WINNMR software package. Raman spectra were obtained on powdered solid samples contained in glass capillary tubes with a Perkin-Elmer 2000 NIR spectrometer in the range 500-50 cm⁻¹, IR spectra on Nujol mulls between CsI plates in the range 500-200 cm⁻¹ on a Nicolet 520 FT IR spectrometer. For the determination of decomposition points, samples were heated in sealed glass capillaries in a Büchi B450 instrument.

Preparations

The compounds $P_2I_5^+EI_4^-$ (E = Al, Ga or In) were prepared by addition of PI_3 in CS₂ to CS₂ solutions of EI₃ (E = Al, Ga or In) (**1a**, **2a**, **3a**) or by addition of P_2I_4 and I_2 in CS₂ to CS₂ solutions of EI₃ (E = Al, Ga or In) (**1b**, **2b**, **3b**) by stirring at room temperature. After 24 h the solvent was removed under dynamic vacuum, leaving the solid compound.

 $P_2I_5^+AII_4^-$ 1a. Starting materials: 0.84 g of PI₃ (2.00 mmol), 0.41 g of AII₃ (1.00 mmol). Yield: 1.13 g (92%) of dark red crystals, mp 90 °C (decomp.).

 $P_2I_5^+AII_4^-$ 1b. Starting materials: 0.57 g of P_2I_4 (1.00 mmol), 0.25 g of I_2 (1.00 mmol), 0.41 g of AII₃ (1.00 mmol). Yield: 1.08 g (88%) of dark red crystals, mp 90 °C (decomp.).

 $P_2I_5^+GaI_4^-$ 2a. Starting materials: 0.84 g of PI₃ (2.00 mmol), 0.45 g of GaI₃ (1.00 mmol). Yield: 1.10 g (86%) of red solid, mp 111 °C (decomp.).

 $P_2I_5^+GaI_4^-$ 2b. Starting materials: 0.57 g of P_2I_4 (1.00 mmol), 0.25 g of I_2 (1.00 mmol), 0.45 g of GaI_3 (1.00 mmol). Yield: 1.10 g (86%) of red solid, mp 111 °C (decomp.).

1732 J. Chem. Soc., Dalton Trans., 1999, 1729–1733

 $P_2I_5^+InI_4^-$ 3a. Starting materials: 0.84 g of PI_3 (2.00 mmol), 0.50 g of InI_3 (1.00 mmol). Yield: 1.28 g (99%) of dark red solid, mp 84 °C (decomp.).

 $P_2I_5^+InI_4^-$ 3b. Starting materials: 0.57 g of P_2I_4 (1.00 mmol), 0.25 g of I_2 (1.00 mmol), 0.50 g of InI_3 (1.00 mmol). Yield: 1.28 g (99%) of dark red solid, mp 84 °C (decomp.).

Computational methods

The structure and vibrational data for PI_4^+ and $P_2I_5^+$ were calculated by using density functional theory with the program package GAUSSIAN 94.¹⁹ For phosphorus a standard 6-31G(d,p) basis set was used and for I a quasi-relativistic pseudopotential (ECP46MWB)²⁰ and a (5s5p1d)/[3s3p1d]-DZ+P basis set.²¹ The computations were carried out at the DFT level using the hybrid method B3LYP which includes a mixture of Hartree–Fock exchange with DFT exchange correlation. Becke's 3 parameter functional where the non-local correlation is provided by the LYP expression (Lee, Yang, Parr correlation functional) was used which is implemented in GAUSSIAN 94. For a concise definition of the B3-LYP functional see ref. 22.

Acknowledgements

We gratefully acknowledge the support of the Fonds der Chemischen Industrie and the University of Munich. We also thank Dr M. Kaupp for helpful advice and the Leibnitz Rechenzentrum for a generous allocation of time on the Cray T 90 computer.

References

- 1 M. Baudler and G. Wetter, Z. Anorg. Allg. Chem., 1964, 329, 3.
- O. Stecher and E. Wiberg, *Ber. Disch. Chem. Ges.*, 1942, **75**, 2003;
 E. Wiberg, H. Graf, M. Schmidt and R. Usón, *Z. Naturforsch.*, *Teil B*, 1952, **7**, 578;
 E. Wiberg, H. Graf and R. Usón, *Z. Anorg. Allg. Chem.*, 1953, **275**, 221;
 G. W. Fraser, N. N. Greenwood and B. P. Straughan, *J. Chem. Soc.*, 1963, 3742.
- 3 S. Pohl, Z. Anorg. Allg. Chem., 1983, 498, 20.
- 4 S. Pohl, Z. Anorg. Allg. Chem., 1983, 498, 15.
- 5 Y. C. Leung and J. Waser, J. Phys. Chem., 1956, 60, 539.
- 6 V. A. Ginsburg and N. F. Privezentsva, Zh. Obshch. Khim., 1958, 28, 736.
- 7 W.-W. duMont, V. Stenzel, J. Jeske, P. G. Jones, A. Sebald, S. Pohl, W. Saak and M. Bätcher, *Inorg. Chem.*, 1994, **33**, 1502.
- 8 M. Kaupp, Ch. Aubauer, G. Engelhardt, T. M. Klapötke and O. L. Malkina, J. Chem. Phys., 1999, 110, 3897.
- 9 (a) N. Bricklebank, S. M. Godfrey, C. A. McAuliffe, P. Deplano, M. L. Mercuri and J. M. Deplano, J. Chem. Soc., Dalton. Trans., 1998, 2379; (b) N. Bricklebank, S. M. Godfrey, H. P. Lane, C. A. McAuliffe, R. G. Pritchard and J. M. Moreno, J. Chem. Soc., Dalton. Trans., 1995, 2421; (c) cf. e.g. K. B. Dillon, M. G. C. Dillon and T. C. Waddington, J. Inorg. Nucl. Chem., 1976, **38**, 132.
- 10 I. Tornieporth-Oetting and T. M. Klapötke, J. Chem. Soc., Chem. Commun., 1990, 132.
- 11 Ch. Aubauer, Diploma Thesis, Ludwig-Maximilians-Universität, München, 1998.
- 12 S. G. Frankiss, F. A. Miller, H. Stammreich and Th. T. Sans, *Spectrochim. Acta, Part A*, 1967, 23, 543.
- A. H. Cowley and S. T. Cohen, *Inorg. Chem.*, 1965, 4, 1200;
 G. W. Chantry, A. Finch, P. N. Gates and D. Steele, *J. Chem. Soc. A*, 1966, 896.
- 14 G. M. Begun, C. R. Boston, G. Torsi and G. Mamantov, *Inorg. Chem.*, 1971, 10, 886.
- 15 L. A. Woodward and G. H. Singer, J. Chem. Soc., 1958, 716.
- 16 M. Kaupp, Ch. Aubauer, G. Engelhardt and T. M. Klapötke, unpublished results.
- 17 K. B. Dillon, A. W. G. Platt and T. C. Waddington, *Inorg. Nucl. Chem. Lett.*, 1981, **17**, 201.
- 18 Ch. Aubauer, G. Engelhardt and T. M. Klapötke, unpublished results.
- 19 GAUSSIAN 94, Revision B.2, M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Peterson, J. A. Montgomery,

K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. A. Ortiz, K. Kagnavachari, M. A. Al-Laham, V. G. Zakrzewski, J. A. Ortiz, J. B. Foresman, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzales and J. A. Pople, Gaussian Inc., Pittsburgh, 1995.
20 P. Schwertfeger, M. Dolg, W. H. E. Schwarz, G. A. Bowmaker and P. D. W. Boyd, J. Chem. Phys., 189, 91, 1762.

- M. Kaupp, P. v. R. Schleyer, H. Stoll and H. Preuss, J. Am. Chem. Soc., 1991, 113, 1602.
- 22 C. W. Bauschlicher and H. Partridge, Chem. Phys. Lett., 1994, 231, C. W. Batschneiter and H. Farthlege, *Chem. Phys. Lett.*, 1954, 231, 277; A. D. Becke, *J. Chem. Phys.*, 1993, 98, 5648; *Phys. Rev. A*, 1988, 38, 3098; C. Lee, W. Yang and R. G. Parr, *Phys. Rev. B*, 1988, 37, 785; S. H. Vosko, L. Wilk and M. Nusair, *Can. J. Phys.*, 1980, 58, 1200.

Paper 9/01133A